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The Object-Oriented Database SystemManifestoMalcolm AtkinsonUniversity of Glasgow Fran�cois BancilhonAlta��rDavid DeWittUniversity of Wisconsin Klaus DittrichUniversity of ZurichDavid MaierOregon Graduate Center Stanley ZdonikBrown UniversityAbstractThis paper attempts to de�ne an object-oriented database system. It describes themain features and characteristics that a system must have to qualify as an object-oriented database system.We have separated these characteristics into three groups:� Mandatory, the ones the system must satisfy in order to be termed an object-oriented database system. These are complex objects, object identity, encapsula-tion, types or classes, inheritance, overriding combined with late binding, extensi-bility, computational completeness, persistence, secondary storage management,concurrency, recovery and an ad hoc query facility.� Optional, the ones that can be added to make the system better, but which arenot mandatory. These are multiple inheritance, type checking and inferencing,distribution, design transactions and versions.� Open, the points where the designer can make a number of choices. These arethe programming paradigm, the representation system, the type system, anduniformity.We have taken a position, not so much expecting it to be the �nal word as to erecta provisional landmark to orient further debate.1 IntroductionCurrently, object-oriented database systems (OODBS) are receiving a lot of attention fromboth experimental and theoretical standpoints, and there has been considerable debate aboutthe de�nition of such systems. 1
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Three points characterize the �eld at this stage: (i) the lack of a common data model,(ii) the lack of formal foundations and (iii) strong experimental activity.Whereas Codd's original paper [Codd 70] gave a clear speci�cation of a relational databasesystem (data model and query language), no such speci�cation exists for object-orienteddatabase systems [Maier 89]. We are not claiming here that no complete object-oriented datamodel exists, indeed many proposals can be found in the literature (see [Albano et al. 1986],[L�ecluse and Richard 89], [Carey et al. 88] as examples), but rather that there is no consen-sus on a single one. Opinion is slowly converging on the gross characteristics of a familyof object-oriented systems, but, at present, there is no clear consensus on what an object-oriented system is, let alone an object-oriented database system.The second characteristic of the �eld is the lack of a strong theoretical framework.To compare object-oriented programming to logic programming, there is no equivalent of[Van Emdem and Kowalski 76]. The need for a solid underlying theory is obvious: the se-mantics of concepts such as types or programs are often ill de�ned. The absence of a solidtheoretical framework, makes consensus on the data model almost impossible to achieve.Finally, a lot of experimental work is underway: people are actually building systems.Some of these systems are just prototypes [Bancilhon et al. 88], [Nixon, et al. 87], [Banerjee et al. 87],[Skarra et al. 86], [Fishman et al. 87], [Carey et al. 86], but some are commercial products,[Atwood 85], [Maier, et al. 84], [Caruso and Sciore 87], [G-Base 88]. The interest in object-oriented databases seems to be driven by the needs of design support systems (e.g., CAD,CASE, O�ce Information Systems). These applications require databases that can handlevery complex data, that can evolve gracefully, and that can provide the high-performancedictated by interactive systems.The implementation situation is analogous to relational database systems in the mid-seventies (though there are more start-ups in the object-oriented case). For relational sys-tems, even though there were some disagreements on a few speci�c points, such as the formof the query language, or whether relations should be sets or bags, these distinctions were inmost cases super�cial and there was a common underlying model. People were mainly devel-oping implementation technology. Today, we are simultaneously choosing the speci�cationof the system and producing the technology to support its implementation.Thus, with respect to the speci�cation of the system, we are taking a Darwinian ap-proach: we hope that, out of the set of experimental prototypes being built, a �t modelwill emerge. We also hope that viable implementation technology for that model will evolvesimultaneously.Unfortunately, with the 
urry of experimentation, we risk a system emerging as thesystem, not because it is the �ttest, but because it is the �rst one to provide a signi�cantsubset of the functionality demanded by the market. It is a classical, and unfortunate,pattern of the computer �eld that an early product becomes the de facto standard and neverdisappears. This pattern is true at least for languages and operating systems (Fortran, Lisp,Cobol and SQL are good examples of such situations). Note however, that our goal here isnot to standardize languages, but to re�ne terminology.It is important to agree now on a de�nition of an object-oriented database systems. Asa �rst step towards this goal, this paper suggests characteristics that such systems shouldpossess. We expect that the paper will be used as a straw man, and that others will either2
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invalidate or con�rm the points mentioned here. Note that this paper is not a survey of thestate of the art on OODBS technology and do not pretend to assess the current status ofthe technology, it merely proposes a set of de�nitions.We have separated the characteristics of object-oriented database systems into threecategories: mandatory (the ones that the system must satisfy to deserve the label), optional(the ones that can be added to make the system better but which are not mandatory) andopen (the places where the designer can select from a number of equally acceptable solutions).In addition, there is some leeway how to best formulate each characteristic (mandatory aswell as optional).The rest of this paper is organized as follows. Section 2 describes the mandatory featuresof an OODBS. Section 3 describes its optional features and Section 4 presents the degreesof freedom left to the system designers.2 Mandatory features: the Golden RulesAn object-oriented database system must satisfy two criteria: it should be a DBMS, and itshould be an object-oriented system, i.e., to the extent possible, it should be consistent withthe current crop of object-oriented programming languages. The �rst criterion translatesinto �ve features: persistence, secondary storage management, concurrency, recovery and anad hoc query facility. The second one translates into eight features: complex objects, objectidentity, encapsulation, types or classes, inheritance, overriding combined with late binding,extensibility and computational completeness.2.1 Complex objectsThou shalt support complex objectsComplex objects are built from simpler ones by applying constructors to them. The simplestobjects are objects such as integers, characters, byte strings of any length, booleans and 
oats(one might add other atomic types). There are various complex object constructors: tuples,sets, bags, lists, and arrays are examples. The minimal set of constructors that the systemshould have are set, list and tuple. Sets are critical because they are a natural way ofrepresenting collections from the real world. Tuples are critical because they are a naturalway of representing properties of an entity. Of course, both sets and tuples are importantbecause they gained wide acceptance as object constructors through the relational model.Lists or arrays are important because they capture order, which occurs in the real world,and they also arise in many scienti�c applications, where people need matrices or time seriesdata.The object constructors must be orthogonal: any constructor should apply to any object.The constructors of the relational model are not orthogonal, because the set construct canonly be applied to tuples and the tuple constructor can only be applied to atomic values.Other examples are non-�rst normal form relational models in which the top level constructmust always be a relation. 3
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Note that supporting complex objects also requires that appropriate operators must beprovided for dealing with such objects (whatever their composition). That is, operationson a complex object must propagate transitively to all its components. Examples includethe retrieval or deletion of an entire complex object or the production of a \deep" copy (incontrast to a \shallow" copy where components are not replicated, but are instead referencedby the copy of the object root only). Additional operations on complex objects may bede�ned, of course, by users of the system (see the extensibility rule below). However, thiscapability requires some system provided provisions such as two distinguishable types ofreferences (\is-part-of" and \general").2.2 Object identityThou shalt support object identityObject identity has long existed in programming languages. The concept is more recent indatabases, e.g., [Hall et al. 76], [Maier and Price 84], [Khosha�an and Copeland 86]. Theidea is the following: in a model with object identity, an object has an existence which isindependent of its value. Thus two notions of object equivalence exist: two objects can beidentical (they are the same object) or they can be equal (they have the same value). Thishas two implications: one is object sharing and the other one is object updates.Object sharing: in an identity-based model, two objects can share a component. Thus,the pictorial representation of a complex object is a graph, while it is limited to be a treein a system without object identity. Consider the following example: a Person has a name,an age and a set of children. Assume Peter and Susan both have a 15-year-old child namedJohn. In real life, two situations may arise: Susan and Peter are parent of the same child orthere are two children involved. In a system without identity, Peter is represented by:(peter, 40, {(john, 15, {})})and Susan is represented by:(susan, 41, {(john, 15, {})}).Thus, there is no way of expressing whether Peter and Susan are the parents of the samechild. In an identity-based model, these two structures can share the common part (john,15, fg) or not, thus capturing either situations.Object updates: assume that Peter and Susan are indeed parents of a child named John.In this case, all updates to Susan's son will be applied to the object John and, consequently,also to Peter's son. In a value-based system, both sub-objects must be updated separately.Object identity is also a powerful data manipulation primitive that can be the basis of set,tuple and recursive complex object manipulation, [Abiteboul and Kanellakis 89].Supporting object identity implies o�ering operations such as object assignment, objectcopy (both deep and shallow copy) and tests for object identity and object equality (bothdeep and shallow equality).Of course, one can simulate object identity in a value-based system by introducing explicitobject identi�ers. However, this approach places the burden on the user to insure the4
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uniqueness of object identi�ers and to maintain referential integrity (and this burden can besigni�cant for operations such as garbage collection).Note that identity-based models are the norm in imperative programming languages:each object manipulated in a program has an identity and can be updated. This identityeither comes from the name of a variable or from a physical location in memory. But theconcept is quite new in pure relational systems, where relations are value-based.2.3 EncapsulationThou shalt encapsulate thine objectsThe idea of encapsulation comes from (i) the need to cleanly distinguish between the speci�-cation and the implementation of an operation and (ii) the need for modularity. Modularityis necessary to structure complex applications designed and implemented by a team of pro-grammers. It is also necessary as a tool for protection and authorization.There are two views of encapsulation: the programming language view (which is theoriginal view since the concept originated there) and the database adaptation of that view.The idea of encapsulation in programming languages comes from abstract data types. Inthis view, an object has an interface part and an implementation part. The interface part isthe speci�cation of the set of operations that can be performed on the object. It is the onlyvisible part of the object. The implementation part has a data part and a procedural part.The data part is the representation or state of the object and the procedure part describes,in some programming language, the implementation of each operation.The database translation of the principle is that an object encapsulates both programand data. In the database world, it is not clear whether the structural part of the type is oris not part of the interface (this depends on the system), while in the programming languageworld, the data structure is clearly part of the implementation and not of the interface.Consider, for instance, an Employee. In a relational system, an employee is representedby some tuple. It is queried using a relational language and, later, an application programmerwrites programs to update this record such as to raise an Employee's salary or to �re anEmployee. These are generally either written in a imperative programming language withembedded DML statements or in a fourth generation language and are stored in a traditional�le system and not in the database. Thus, in this approach, there is a sharp distinctionbetween program and data, and between the query language (for ad hoc queries) and theprogramming language (for application programs).In an object-oriented system, we de�ne the Employee as an object that has a data part(probably very similar to the record that was de�ned for the relational system) and anoperation part, which consists of the raise and �re operations and other operations to accessthe Employee data. When storing a set of Employees, both the data and the operations arestored in the database.Thus, there is a single model for data and operations, and information can be hidden.No operations, outside those speci�ed in the interface, can be performed. This restrictionholds for both update and retrieval operations.Encapsulation provides a form of \logical data independence": we can change the im-5
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plementation of a type without changing any of the programs using that type. Thus, theapplication programs are protected from implementation changes in the lower layers of thesystem.We believe that proper encapsulation is obtained when only the operations are visibleand the data and the implementation of the operations are hidden in the objects.However, there are cases where encapsulation is not needed, and the use of the systemcan be signi�cantly simpli�ed if the system allows encapsulation to be be violated undercertain conditions. For example, with ad-hoc queries the need for encapsulation is reducedsince issues such as maintainability are not important. Thus, an encapsulation mechanismmust be provided by an OODBS, but there appear to be cases where its enforcement is notappropriate.2.4 Types and ClassesThou shalt support types or classesThis issue is touchy: there are two main categories of object-oriented systems, those sup-porting the notion of class and those supporting the notion of type. In the �rst category, aresystems such as Smalltalk [Goldberg and Robson 83], Gemstone [Maier, et al. 84], Vision[Caruso and Sciore 87], and more generally all the systems of the Smalltalk family, Orion[Banerjee et al. 87], Flavors [Bobrow and Stei�k 81], G-Base [G-Base 88], Lore [Caseau 89]and more generally all the systems derived from Lisp. In the second category, we �nd systemssuch as C++ [Stroustrup 86], Simula [Simula 67], Trellis/Owl [Scha�ert, et al. 86], Vbase[Atwood 85] and O2 [Bancilhon et al. 88].A type, in an object-oriented system, summarizes the common features of a set of objectswith the same characteristics. It corresponds to the notion of an abstract data type. It hastwo parts: the interface and the implementation (or implementations). Only the interfacepart is visible to the users of the type, the implementation of the object is seen only by thetype designer. The interface consists of a list of operations together with their signatures(i.e., the type of the input parameters and the type of the result).The type implementation consists of a data part and an operation part. In the datapart, one describes the internal structure of the object's data. Depending on the power ofthe system, the structure of this data part can be more or less complex. The operation partconsists of procedures which implement the operations of the interface part.In programming languages, types are tools to increase programmer productivity, by in-suring program correctness. By forcing the user to declare the types of the variables andexpressions he/she manipulates, the system reasons about the correctness of programs basedon this typing information. If the type system is designed carefully, the system can do thetype checking at compile-time, otherwise some of it might have to be deferred at compiletime. Thus types are mainly used at compile time to check the correctness of the programs.In general, in type-based systems, a type is not a �rst class citizen and has a special statusand cannot be modi�ed at run-time.The notion of class is di�erent from that of type. Its speci�cation is the same as that ofa type, but it is more of a run-time notion. It contains two aspects: an object factory and6
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an object warehouse. The object factory can be used to create new objects, by performingthe operation new on the class, or by cloning some prototype object representative of theclass. The object warehouse means that attached to the class is its extension, i.e., the set ofobjects that are instances of the class. The user can manipulate the warehouse by applyingoperations on all elements of the class. Classes are not used for checking the correctness of aprogram but rather to create and manipulate objects. In most systems that employ the classmechanism, classes are �rst class citizens and, as such, can be manipulated at run-time, i.e.,updated or passed as parameters. In most cases, while providing the system with increased
exibility and uniformity, this renders compile-time type checking impossible.Of course, there are strong similarities between classes and types, the names have beenused with both meanings and the di�erences can be subtle in some systems.We do not feel that we should choose one of these two approaches and we consider thechoice between the two should be left to the designer of the system (see Section 4.3). Werequire, however, that the system should o�er some form of data structuring mechanism, beit classes or types. Thus the classical notion of database schema will be replaced by that ofa set of classes or a set of types.We do not, however, feel that is necessary for the system to automatically maintain theextent of a type (i.e., the set of objects of a given type in the database) or, if the extentof a type is maintained, for the system to make it accessible to the user. Consider, forexample, the rectangle type, which can be used in many databases by multiple users. Itdoes not make sense to talk about the set of all rectangles maintained by the system orto perform operations on them. We think it is more realistic to ask each user to maintainand manipulate its own set of rectangles. On the other hand, in the case of a type such asemployee, it might be nice for the system to automatically maintain the employee extent.2.5 Class or Type HierarchiesThine classes or types shalt inherit from their ancestorsInheritance has two advantages: it is a powerful modeling tool, because it gives a conciseand precise description of the world and it helps in factoring out shared speci�cations andimplementations in applications.An example will help illustrate the interest in having the system provide an inheritancemechanism. Assume that we have Employees and Students. Each Employee has a name, anage above 18 and a salary, he or she can die, get married and be paid (how dull is the life ofthe Employee!). Each Student has an age, a name and a set of grades. He or she can die,get married and have his or her GPA computed.In a relational system, the data base designer de�nes a relation for Employee, a relationfor Student, writes the code for the die, marry and pay operations on the Employee relation,and writes the code for the die, marry and GPA computation for the Student relation. Thus,the application programmer writes six programs.In an object-oriented system, using the inheritance property, we recognize that Employeesand Students are Persons; thus, they have something in common (the fact of being a Person),and they also have something speci�c. We introduce a type Person, which has attributes7
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name and age and we write the operations die and marry for this type. Then, we declarethat Employees are special types of Persons, who inherit attributes and operations, and havea special attribute salary and a special operation pay. Similarly, we declare that a Studentis a special kind of Person, with a speci�c set-of-grades attribute and a special operationGPA computation. In this case, we have a better structured and more concise descriptionof the schema (we factored out speci�cation) and we have only written four programs (wefactored out implementation). Inheritance helps code reusability, because every program isat the level at which the largest number of objects can share it.There are at least four types of inheritance: substitution inheritance, inclusion inheri-tance, constraint inheritance and specialization inheritance.In substitution inheritance, we say that a type t inherits from a type t', if we can performmore operations on objects of type t than on object of type t'. Thus, any place where wecan have an object of type t', we can substitute for it an object of type t. This kind ofinheritance is based on behavior and not on values.Inclusion inheritance corresponds to the notion of classi�cation. It states that t is subtypeof t', if every object of type t is also an object of type t'. This type of inheritance is basedon structure and not on operations. An example is a square type with methods get, set(size)and �lled-square, with methods get, set(size), and �ll(color).Constraint inheritance is a subcase of inclusion inheritance. A type t is a subtype of atype t', if it consists of all objects of type t which satisfy a given constraint. An exampleof such a inheritance is that teenager is a subclass of person: teenagers don't have anymore �elds or operations than persons but they obey more speci�c constraints (their age isrestricted to be between 13 and 19).With specialization inheritance, a type t is a subtype of a type t', if objects of type t areobjects of type t which contains more speci�c information. Examples of such are personsand employees where the information on employees is that of persons together with someextra �elds.Various degrees of these four types of inheritance are provided by existing systems andprototypes, and we do not prescribe a speci�c style of inheritance.2.6 Overriding, overloading and late bindingThou shalt not bind prematurelyIn contrast to the previous example, there are cases where one wants to have the same nameused for di�erent operations. Consider, for example, the display operation: it takes an objectas input and displays it on the screen. Depending on the type of the object, we want to usedi�erent display mechanisms. If the object is a picture, we want it to appear on the screen.If the object is a person, we want some form of a tuple printed. Finally, if the object is agraph, we will want its graphical representation. Consider now the problem of displaying aset, the type of whose members is unknown at compile time.In an application using a conventional system, we have three operations: display-person,display-bitmap and display-graph. The programmer will test the type of each object in theset and use the corresponding display operation. This forces the programmer, to be aware8
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of all the possible types of the objects in the set, to be aware of the associated displayoperation, and to use it accordingly.for x in X dobegincase of type(x)person: display(x);bitmap: display-bitmap(x);graph: display-graph(x);endendIn an object-oriented system, we de�ne the display operation at the object type level(the most general type in the system). Thus, display has a single name and can be usedindi�erently on graphs, persons and pictures. However, we rede�ne the implementation of theoperation for each of the types according to the type (this rede�nition is called overriding).This results in a single name (display) denoting three di�erent programs (this is calledoverloading). To display the set of elements, we simply apply the display operations to eachone of them, and let the system pick the appropriate implementation at run-time.for x in X do display(x)Here, we gain a di�erent advantage: the type implementors still write the same numberof programs. But the application programmer does not have to worry about three di�erentprograms. In addition, the code is simpler as there is no case statement on types. Finally,the code is more maintainable as when a new type is introduced as new instance of the typeare added, the display program will continue to work without modi�cation. (provided thatwe override the display method for that new type).In order to provide this new functionality, the system cannot bind operation names toprograms at compile time. Therefore, operation names must be resolved (translated intoprogram addresses) at run-time. This delayed translation is called is called late binding.Note that, even though late binding makes type checking more di�cult (and in somecases impossible), it does not preclude it completely.2.7 Computational completenessThou shalt be computationally completeFrom a programming language point of view, this property is obvious: it simply means thatone can express any computable function, using the DML of the database system. From adatabase point of view this is a novelty, since SQL for instance is not complete.We are not advocating here that designers of object-oriented database systems de-sign new programming languages: computational completeness can be introduced througha reasonable connection to existing programming languages. Most systems indeed usean existing programming language [Banerjee et al. 87], [Fishman et al. 87], [Atwood 85],[Bancilhon et al. 88]; see [Bancilhon and Maier 88] for a discussion of this problem.9
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Note that this is di�erent from being \resource complete", i.e., being able to access allresources of the system (e.g. screen and remote communication) from within the language.Therefore, the system, even though computationally complete might not be able to expressa complete application. It is, however, more powerful than a database system which onlystores and retrieves data and performs simple computations on atomic values.2.8 ExtensibilityThou shalt be extensibleThe database system comes with a set of prede�ned types. These types can be used atwill by programmers to write their applications. This set of type must be extensible in thefollowing sense: there is a means to de�ne new types and there is no distinction in usagebetween system de�ned and user de�ned types. Of course, there might be a strong di�erencein the way system and user de�ned types are supported by the system, but this shouldbe invisible to the application and to the application programmer. Recall that this typede�nition includes the de�nition of operations on the types. Note that the encapsulationrequirement implies that there will be a mechanism for de�ning new types. This requirementstrengthens that capability by saying that newly created types must have the same statusas existing ones.However, we do not require that the collection of type constructors (tuples, sets, lists,etc.) be extensible.2.9 PersistenceThou shalt remember thy dataThis requirement is evident from a database point of view, but a novelty from a programminglanguage point of view, [Atkinson et al. 83]. Persistence is the ability of the programmerto have her/his data survive the execution of a process, in order to eventually reuse it inanother process. Persistence should be orthogonal, i.e., each object, independent of its type,is allowed to become persistent as such (i.e., without explicit translation). It should also beimplicit: the user should not have to explicitly move or copy data to make it persistent.2.10 Secondary storage managementThou shalt manage very large databasesSecondary storage management is a classical feature of database management systems. Itis usually supported through a set of mechanisms. These include index management, dataclustering, data bu�ering, access path selection and query optimization.None of these is visible to the user: they are simply performance features. However,they are so critical in terms of performance that their absence will keep the system fromperforming some tasks (simply because they take too much time). The important point10
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is that they be invisible. The application programmer should not have to write code tomaintain indices, to allocate disk storage, or to move data between disk and main memory.Thus, there should be a clear independence between the logical and the physical level of thesystem.2.11 ConcurrencyThou shalt accept concurrent usersWith respect to the management of multiple users concurrently interacting with the system,the system should o�er the same level of service as current database systems provide. Itshould therefore insure harmonious coexistence among users working simultaneously on thedatabase. The system should therefore support the standard notion of atomicity of a se-quence of operations and of controlled sharing. Serializability of operations should at leastbe o�ered, although less strict alternatives may be o�erered.2.12 RecoveryThou shalt recover from hardware and software failuresHere again, the system should provide the same level of service as current database systems.Therefore, in case of hardware or software failures, the system should recover, i.e., bringitself back to some coherent state of the data. Hardware failures include both processor anddisk failures.2.13 Ad Hoc Query FacilityThou shalt have a simple way of querying dataThe main problem here is to provide the functionality of an ad hoc query language. We do notrequire that it be done in the form of a query language but just that the service be provided.For instance, a graphical browser could be su�cient to ful�ll this functionality. The serviceconsists of allowing the user to ask simple queries to the database simply. The obviousyardstick is of course relational systems, thus the test is to take a number of representativerelational queries and to check whether they can be stated with the same amount of work.Note that this facility could be supported by the data manipulation language or a subset ofit. We believe that a query facility should satisfy the following three criteria: (i) It shouldbe high level, i.e., one should be able to express (in a few words or in a few mouse clicks)non-trivial queries concisely. This implies that it should be reasonably declarative, i.e.,it should emphasize the what and not the how. (ii) It should be e�cient. That is, theformulation of the queries should lend itself to some form of query optimization. (iii) Itshould be application independent, i.e., it should work on any possible database. Thislast requirements eliminates speci�c querying facilities which are application dependent, orrequire writing additional operations on each user-de�ned type.11
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2.14 SummaryThis concludes the list of mandatory features and the distinction between traditionaland object-oriented database systems should be clear. Relational database systems do notsatisfy rules 1 through 8. CODASYL database systems partially satisfy rules 1 and 2. Somepeople have argued that object-oriented database systems are nothing more than CODASYLsystems. It should be noted that (i) CODASYL systems do not completely satisfy these tworules (the object constructors are not orthogonal and object identity is not treated uniformlysince relationships are restricted to be 1:n), and (ii) they do not satisfy rules 3, 5, 6, 8 and13. There is a collection of features for which the authors have not reached consensus onwhether they should be required or optional. These features are:� view de�nition and derived data;� database administration utilities;� integrity constraints;� schema evolution facility.3 Optional features: the goodiesWe put under this heading things which clearly improve the system, but which are notmandatory to make it an object-oriented database system.Some of these features are of an object oriented nature (e.g. multiple inheritance). Theyare included in this category because, even though they make the system more object-oriented, they do not belong in the core requirements.Other features are simply database features (e.g. design transaction management). Thesecharacteristics usually improve the functionality of a data base system, but they are not in thecore requirement of database systems and they are unrelated to the object oriented aspect.In fact most of them are targeted at serving \new" applications (CAD/CAM, CASE, O�ceautomation, etc.) and are more application oriented than technology oriented. Because manyobject-oriented database systems are currently aiming at these new applications, there hasbeen some confusion between these features and the object-oriented nature of the system.3.1 Multiple inheritanceWhether the system provides multiple inheritance or not is an option. Since agreement onmultiple inheritance in the object-oriented community has not yet been reached, we considerproviding it to be optional. Note that once one decides to support multiple inheritance, thereare many possible solutions for dealing with the problem of con
ict resolution.12
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3.2 Type checking and type inferencingThe degree of type checking that the system will perform at compile time is left open butthe more the better. The optimal situation is the one where a program which was acceptedby the compiler cannot produce any run-time type errors. The amount of type inferencingis also left open to the system designer: the more the better, the ideal situation is the one inwhich only the base types have to be declared and the system infers the temporary types.3.3 DistributionIt should be clear that this characteristic is orthogonal to the object-oriented nature of thesystem. Thus, the database system can be distributed or not.3.4 Design transactionsIn most new applications, the transaction model of classical business oriented databasesystem is not satisfactory: transactions tend to be very long and the usual serializability cri-terion is not adequate. Thus, many OODBSs support design transactions (long transactionsor nested transactions).3.5 VersionsMost of the new applications (CAD/CAM and CASE) involve a design activity and requiresome form of versioning. Thus, many OODBSs support versions. Once again, providing aversioning mechanism this is not part of the core requirements for the system.4 Open choicesEvery system which satis�es rules 1 through 13 deserves the OODBS label. When designingsuch a system, there are still a lot of design choices to be made. These are the degrees offreedom for the OODBS implementors. These characteristics di�er from the mandatory onesin the sense that no consensus has yet been reached by the scienti�c community concerningthem. They also di�er from the optional features in that we do not know which of thealternatives are more or less object-oriented.4.1 Programming paradigmWe see no reason why we should impose one programming paradigm more than another:the logic programming style [Bancilhon 86], [Zaniolo 86], the functional programming style[Albano et al. 1986], [Banerjee et al. 87], or the imperative programming style [Stroustrup 86],[Ei�el 87], [Atwood 85] could all be chosen as programming paradigms. Another solution isthat the system be independent of the programming style and support multiple programmingparadigms [Skarra et al. 86], [Bancilhon et al. 88].Of course, the choice of the syntax is also free and people will argue forever whether oneshould write \john hire" or \john.hire" or \hire john" or \hire(john)".13
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4.2 Representation systemThe representation system is de�ned by the set of atomic types and the set of constructors.Even though we gave a minimal set of atomic types and constructors ( elementary typesfrom programming languages, and set, tuple and list constructors) available for describingthe representation of objects, can be extended in many di�erent ways.4.3 Type systemThere is also freedom with respect to the type formers. The only type formation facilitywe require is encapsulation. There can be other type formers such as generic types or typegenerator (such as set[T], where T can be an arbitrary type), restriction, union and arrow(functions).Another option is whether the type system is second order. Finally, the type system forvariables might be richer than the type system for objects.4.4 UniformityThere is a heated debate on the degree of uniformity one should expect of such systems:is a type an object? is a method an object? or should these three notions be treateddi�erently? We can view this problem at three di�erent levels: the implementation level,the programming language level and the interface level.At the implementation level, one must decide whether type information should be storedas objects, or whether an ad hoc system must be implemented. This is the same issuerelational database systems designers have to face when they must decide whether to storethe schema as a table or in some ad hoc fashion. The decision should be made based onperformance and ease of implementation grounds. Whatever, decision is made is, however,independent from the one taken at the next level up.At the programming language level, the question is the following: are types �rst classentities in the semantics of the language. Most of the debate is concentrated on this question.There are probably di�erent styles of uniformity (syntactical or semantical). Full uniformityat this level is also inconsistent with static type checking.Finally, at the interface level, another independent decision must be made. One mightwant to present the user with a uniform view of types, objects, and methods, even if in thesemantics of the programming language, these are notions of a di�erent nature. Conversely,one could present them as di�erent entities, even though the programming language viewsthem as the same thing. That decision must be made based on human factor criteria.5 ConclusionsSeveral other authors, [Kim 88] and [Dittrich 1986] argue that an OODBS is a DBMS withan underlying object-oriented data model. If one takes the notion of a data model in abroad sense that especially includes the additional aspects going beyond record-orientation,this view is certainly in accordance with our approach. [Dittrich 1986] and [Dittrich 1988]14
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introduce a classi�cation of object-oriented data models (and, consequently, of OODBS): ifit supports complex objects, a model is called structurally object-oriented; if extensibilityis provided, is it called behaviorally object-oriented ; a fully object-oriented model has too�er both features. This de�nition also requires persistence, disk management, concurrency,and recovery; it at least implicitly assumes most of the other features (where applicable,according to the various classes); in total, it is thus slightly more liberal than our approach.However, as most current systems and prototypes do not ful�ll all requirements mandatedby our de�nition anyway, this classi�cation provides a useful framework to compare bothexisting and ongoing work.We have proposed a collection of de�ning characteristics for an object-oriented databasesystem. To the best of our knowledge, the golden rules presented in this paper are currentlythe most detailed de�nition of an object-oriented database system. The choice of the char-acteristics and our interpretation of them devolves from out experience in specifying andimplementing the current round of systems. Further experience with the design, implemen-tation, and formalization of object-oriented databases will undoubtedly modify and re�neour stance (in other words, don't be surprised if you hear one of the authors lambasting thecurrent de�nition in the future). Our goal is only to put forth a concrete proposal to bedebated, critiqued and analyzed by the scienti�c community. Thus, our last rule is:Thou shalt question the golden rules6 AcknowledgementsWe wish to thank Philippe Bridon, Gilbert Harrus, Paris Kanellakis, Philippe Richard, andFernando Velez for suggestions and comments on earlier drafts of the paper. David Maier'swork was partially supported by NSF award IST 83-51730, co-sponsored by Tektronix Foun-dation, Intel, Digital Equipment, Servio Logic, Mentor Graphics and Xerox.References[Abiteboul and Kanellakis 89] S. Abiteboul and P. Kanellakis, \Object identity as a querylanguage primitive", Proceedings of the 1989 ACM SIGMOD, Portland, Oregon,June 89[Albano et al. 1986] A. Albano, G. Gheli, G. Occhiuto and R. Orsini, \Galileo: a stronglytyped interactive conceptual language", ACM TODS, Vol 10, No. 2, June 1985.[Atkinson et al. 83] M. Atkinson, P.J. Bayley, K. Chilsom, W. Cockshott and R. Morrison,\An approach to persistent programming", Computer Journal, 26(4), 1983, pp 360-365.[Atwood 85] T. Atwood, \An object-oriented DBMS for design support applications", On-tologic Inc. Report. 15
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